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Abstract—Controlling energy usage in data centers, and
storage in particular, continues to rise in importance.
Many systems and models have examined energy efficiency
through intelligent spin-down of disks and novel data
layouts, yet little work has been done to examine how power
usage over the course of months to years is impacted by the
characteristics of the storage devices chosen for use. Long-
term power usage is particularly important for archival
storage systems, since it is a large contributor to overall
system cost.

In this work, we begin exploring the impact that broad
policies (e.g. utilize high-bandwidth devices first) have upon
the power efficiency of a disk based archival storage system
of heterogeneous devices over the course of a year. Using
a discrete event simulator, we found that even simple
heuristic policies for allocating space can have significant
impact on the power usage of a system. We show that
our system growth policies can cause power usage to vary
from 10% higher to 18% lower than a naive random data
allocation scheme. We also found that under low read rates
power is dominated by that used in standby modes. Most
interestingly, we found cases where concentrating data on
fewer devices yielded increased power usage.

I. INTRODUCTION

Data center energy usage doubled between 2000 and

2006 to nearly 61 billion kilowatt-hours, and has been

forecast to double again by 2011 [1]. Storage is one of

the primary power users in data centers, and is estimated

to consume upwards of 35% the total energy used [2]. As

systems grow to encompass thousands of storage devices

and petabytes of data, the costs become staggering. Tens

of thousands of dollars are being spent to power and

cool storage devices, and energy costs are no longer the

only issues—data center architects must now consider

the associated “carbon footprint” of their systems as

well.

Although there has been much work recently in the

field of power efficient storage—such as intelligent

disk spin-down techniques [3], and energy-aware data

placement [4–6]—there has been little in the way of

examining how broad, long-term management policies

impact energy usage in large storage systems. This is a

significant hole in our knowledge that has a large impact

on storage as a whole, and in particular storage archives.

Archives are unique in the low density of accesses

they receive, often spending significant portions of their

time idle, where it may be acceptable to spin-down

disk based storage for significantly reduced power con-

sumption. Furthermore, archives are often monotonically

increasing in the amount of data stored, and must store

data for decades or longer, far exceeding the typical 3-

5 year hardware life-cycle. This leads to large systems

grown incrementally over many years, composed of

many heterogeneous devices of varying capability and

characteristics.

In this work, we explore the impact that a variety

of broad policies (which devices are prioritized for use

first) have upon the energy usage of a large archive

of heterogeneous storage devices over the course of a

year. Using a basic management framework within a

discrete event simulator we found several notable results

summarized here. First, with a basic energy-aware policy

it is possible to reduce power consumption by nearly

20% over a naive policy when integrating devices in

a growing heterogeneous system. Second, at low read

rates, idle periods and the associated standby modes

dominate power usage, reducing the impact of policy

guided growth. Third, we found cases where a policy

utilizing significantly more devices yielded comparable

or lower power usage than other policies that concen-

trated data on fewer devices.

The rest of the paper is structured as follows: In

Section 2, we discuss relevant work in the fields of

storage system management, energy aware systems, and

power modeling. Section 3 provides an overview of

the architecture of our storage system. In Section 4 we

provide details on our discrete event simulator. Section

5 covers experiments and results. Section 6 discusses

future work, and Section 7 concludes.

II. RELATED WORK

There are many storage system solutions and tools

that aid in providing optimization and tuning towards

organizational goals. However, archival storage solutions

must focus on long-term growth and power-efficiency,
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rather than short-term load-balancing and performance

tuning. In particular, approaches that require frequent

migration and balancing are inappropriate due to the

energy cost and overhead to relocate the data.

Hippodrome [7] aims to maximize performance and

minimize resource usage by providing automatic con-

figuration of storage systems using details of available

resources and workload. By analyzing previous I/O

patterns and disk layout, it designs a system that is

neither over nor under-provisioned for the predicted

tasks, and reconfigures the current system to meet the

new design. Over time, Hippodrome continues to ana-

lyze and reconfigure the system over time, eventually

converging at an optimal design. Though the authors do

not examine it, Hippodrome should be able to integrate

power-awareness.

Strunk et al. [8] take the approach of automating

the design and initial provisioning of a storage system

based on its utility, i.e. the perceived profit or loss for

a given system design. Similarly, Minerva [9] takes as

input an application’s needs and available storage device

capabilities, and returns an optimal provisioning and

layout for a storage system. While these systems are

useful in initial design and provisioning of a storage

solution, they design a static system, as opposed to one

that will be undergoing continuous growth and evolution

as is likely in a large scale archival environment.

Systems such as MAID [10], Pergamum [11] and

PARAID [5] provide power efficiency by keeping as

many disks as possible in lower power modes (spun

down, or rotating at a lower speed) to minimize elec-

tricity usage. MAID and PARAID still aim to have

relatively high performance by utilizing various data-

layout techniques, while Pergamum forgoes performance

for lower power usage with its use of independent low-

power NAS devices. FAWN [12] is a clustered key-

value storage system built from many low power devices;

this design has similarities to Pergamum with its use of

independent coordinated devices with a focus on power

efficiency.

Write off-loading [4] is a technique whereby writes

targeting a spun-down disk are redirected to persistent

storage elsewhere, and opportunistically migrated back

to the intended disk later, thus leaving more drives spun

down. Popular Data Concentration (PDC) [6] migrates

frequently accessed data to a subset of devices on a

disk array, skewing the load such that more of the drives

in the array can be transitioned to lower power modes.

Similarly, Hibernator [13] utilizes Adaptive Layout to

strike a balance between power-efficiency and perfor-

mance in a storage system by dynamically migrating

data blocks between devices. Otoo et al. [3] take an

approach similar to the above systems, concentrating

popular data on fewer devices. Like Hibernator, they

maintain awareness of the performance impact of such

migrations. Though these solutions consider the power

and performance impact, none account for the cost of

migration, and all are relatively reactive and short-term

based upon characteristics of the workload they are

under. This is important for archival storage, as it is

better to have a merely adequate location for a long

period of time, than more frequent migration to the

optimal one, due to the cost of migration.

Allalouf et al. provide a framework for detailed power

estimation in storage [14]. Their system can take a

workload and details of device capabilities and provide

accurate power use estimations. It is not clear how large

a system may be simulated and their results, though

accurate, are over quite short time periods—less than

8 hours—and only encompass at most a single RAID

enclosure.

III. ARCHITECTURE

In this section we provide an overview of the stor-

age system architecture we use, and provide details on

how it grows and maintains itself over long periods of

time using high level policies to dictate which devices

should be used first. Our architecture was explicitly

designed for coarse-grained, long-term provisioning and

evolution. This is in contrast to the management and

provisioning architectures we discussed earlier that focus

on shorter-term provisioning, load-balancing and perfor-

mance optimization. Our system is not a replacement

for management systems such as Hippodrome, but is

rather a substrate for long-term, evolving storage systems

where such fine grained control may be unnecessary

or infeasible due to things such as lacking a defined

workload or administrative overhead.

A. System Overview

At a high level, our system is comprised of 4 enti-

ties: storage devices (nodes), clients, an administrator,

and a coordinator. Nodes provide usable space to the

system and can coordinate with each other to provide

redundancy, like that of the Pergamum system [11].

A client is anything that writes or reads data to the

storage system. The administrator dictates policies that

the coordinator uses to grow and optimize the system

towards a desired goal, such as power-efficiency. Finally,

the coordinator is a process that monitors and tracks

the storage system, growing and maintaining the system

based on the administrator’s policies. The coordinator

does not dictate where client reads and writes go within
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Reliability Group-1

Reliability Group-2

Reliability Group-3

Storage Devices

= Allocated Space

Fig. 1: An example system layout with three reliability groups
composed of three nodes. The squares represent allocated
space within each reliability group. Note that some devices
are members of multiple RGs, while others have yet to be
integrated into the system.

the system, rather it is only in charge of integrating

devices into the active storage system, and choosing

when and where to migrate data between devices.

Groups of devices are arranged into reliability groups

(RGs); RGs are effectively distributed RAID groups [15].

RGs provide data survivability in the form of replication

or error correcting codes so that device failures can be

tolerated, which is of vital importance in a long-term

archive. A device may be a part of multiple reliability

groups. A single device’s contribution to a reliability

group is referred to as a stripe element. The thickness of

a stripe is the amount of space each device contributes

to a reliability group. The overall system’s RGs and

their respective details—stripe thickness, what devices

are used—are referred to as the system layout. Figure 1

shows an example system layout.

The system has a single coordinator that is responsible

for the creation and maintenance of RGs. In order to

make intelligent decisions regarding the system layout,

the coordinator maintains current information about the

state of storage devices within the system, using dis-

tributed information gathering techniques [16, 17]. This

information includes data such as: active and standby

power usage, bandwidth, available space, space allocated

to RGs, age, and RG membership. The coordinator uses

this information to manipulate a system’s layout through

management tasks.

B. Management Tasks

There are two basic types of management tasks. The

first, scale-out, chooses which devices will be used to

create new RGs to increase the space available to clients.

The second, migration, is responsible for migrating

stripe elements between devices to improve efficiency

or prepare a device for decommissioning.

Each management task runs on the coordinator and

follows the same basic flow: trigger, candidate discovery,

proposal generation, and implementation. First, a trigger

dictates when a task should be started. Second, candidate

discovery creates a list of devices appropriate for use in

the current task. Third, proposal generation uses the list

of devices and a policy algorithm to create a proposed

change to the system, such as creating a new RG. Fourth,

Implementation contacts the relevant nodes and issues

commands to implement the proposal. We now describe

each step in more detail, and how administrators dictate

policies for when and how to change the system.

A trigger is an administratively defined policy thresh-

old stating when a management task should take place,

such as “create a new RG whenever space is 90%

utilized”. Once the trigger has been tripped, candidate

discovery begins. In this step, the coordinator discovers

a list of devices that should be considered for use within

the current management task. The coordinator then runs

this list through a candidate device filter that removes

devices that do not meet administratively defined criteria,

such as devices older than two years. The devices that

remain after being run through the filter are known as a

candidate list.

In proposal generation, the coordinator uses the candi-

date list to create a proposal. A proposal is a mapping of

stripe elements to devices, either for determining where

to migrate a stripe element, or which device should

be used for a particular element of a new RG. Each

task’s proposal is created by a policy algorithm, which is

the mechanism that system administrators use to dictate

the metrics for which a proposal should be optimized

towards, i.e. what devices should be prioritized for use

first. So long as a valid proposal is returned from the

algorithm, any technique and metric for optimization

may be used for a policy. Figure 2 shows an example of

two iterations of a policy algorithm for scale-out that is

searching for a new power-efficient RG proposal.

After a valid proposal has been generated, the co-

ordinator proceeds to implement it by contacting the

relevant devices and issuing commands to act on the

proposal. The combination of triggers, filters, and task

layout algorithms are collectively referred to as a system

policy. The system policy is how administrators tell the

coordinator when and how the system should be grown,

maintained, and optimized.

We now describe the specifics of each task’s opera-

tions and what a valid proposal looks like for each in

turn.
1) Scale-Out: A scale-out task is one that increases

the usable space to the system through the creation of a

new RG. A scale-out proposal has the form of a bipartite

graph, with a one-to-one mapping of stripe elements to

devices. A device may be mapped to one, and only one,
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New Reliability Group 
Stripe Elements

Proposal 1 
(P1) 

1

2

3

4

Proposal 2 
(P2) 

Devices: 1,2,3

Devices: 1,2,4

Power: 10 
Total GB: 100
Avail GB: 25

Power: 8 
Total GB: 50
Avail GB: 20

Power: 12 
Total GB: 35
Avail GB: 5

Power: 14 
Total GB: 35
Avail GB: 20

P1 Stripe Size:   5 GB

P2 Stripe Size: 20 GB

P1 Eval: (80+35+35)/(10+8+12)=5.00 GB/Watt

P2 Eval: (95+50+35)/(10+8+14)=5.47 GB/Watt

Maximize Segments per Watt: (Total GB Allocated/Power)
Create Thickest Stripe Possible

Fig. 2: An example of an RG policy algorithm searching for a
power efficient RG of 3 devices. It randomly selects 3 devices
and tries to create the thickest reliability stripe, evaluating the
total contributed space/watt of each RG it finds. After a set
number of iterations—here we see two—it returns the best
mapping, in terms of space/watt, it finds.

stripe element from any single RG because it would

violate reliability requirements to have multiple stripe

elements from a single RG on one device.

2) Migration: Migration consists of moving stripe

elements between devices within the system to improve

the system state or prepare nodes for removal from the

system. The process for migration includes an additional

culling step to create a move-list before proceeding

to candidate discovery. Culling consists of identifying

which devices need their stripe elements migrated, which

are then put in the move-list. Culling is much like

candidate discovery: it can be defined to meet certain

specifications, such as only selecting devices older than

four years for stripe element migration.

A layout proposal for migration has slightly different

rules from that of scale-out. In migration, multiple stripe

elements may map to a single device, provided that the

device in question does not already contain elements of

the same RG, and that it has enough space to accom-

modate the stripe element being moved. For example,

if there are two stripe elements from different RGs,

both elements may go to a single device provided it

has the available space, and the device is not already

contributing to the RGs that the elements in question

are from. However, if two stripe elements are from the

same RG, they are not allowed to both map to the same

device.

IV. SIMULATION

In this section we describe our discrete event simulator

in more detail and the workload generators we use in our

experiments.

To begin with, each simulated device is treated as

a single element, and has a few basic characteristics:

standby power draw, active power draw, bandwidth, and

available and total space. Each device has a queue where

read and write actions are appended. At each tick, if a

device has any pending actions, it processes them until

the bandwidth for that tick is consumed or the queue

is empty. If all the bandwidth is used, any pending

actions continue during the next tick. The amount of

data that may be read or written to a device during a

tick is the device bandwidth in megabytes per second

(MBPS) adjusted for the length of the tick, which in our

simulations is one minute.

A device consumes power at its active rate if has

serviced a read or write within 5 time ticks. At each time

tick, a device is either on at full power or in standby

mode for the entire tick. The length of time a device

waits before a transition to standby is its idle threshold.

Though there are a variety of methods for calculating

the optimal idle time [3, 18], we chose a fixed time

for simplicity of implementation. A conservative spin-

up delay of 15 seconds is simulated by consuming 1/4

of the available bandwidth for that tick.

Data is not cached within the system; all reads and

writes go directly to the storage devices. We do this

for two reasons: First, accesses to archives are generally

assumed to be random and with little locality [19],

reducing the effectiveness of caching. Secondly, with no

caching we are provided a worst case scenario for power

usage, as a device must always be powered up for a read

or write if it is not already active.

Layout changes are reflected immediately within the

system when they occur, and the coordinator has an

omniscient view of the system. This was done to remain

focused on the impact of various polices on power

efficiency, not on simulating fine-grained implementation

details. We leave examining the energy costs of migra-

tion to future work as it is a one-time cost, while in this

work we focus on the impact of data location over time.

Parity updates and writes are handled in a coarse

fashion. When a write is given to a data device in a

RG, its corresponding parity devices receive a write of

the same size as the original file. In a real system,

the parity calculations may allow many writes to be

coalesced into one. The end result is that the simulator

may overestimate the amount of time parity writes and

updates take, but will not underestimate, helping keep
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our results conservative.

A. Files and Workloads

Our record-keeping for files is simple. Each file has

a size, location—what device they are on—and a tag

marking them as available for reading or not. When a file

is inserted into the system, it is unavailable for reading

until its corresponding write action completes. We do

not stripe files across multiple devices as this requires

spinning up every device in an RG for all reads and

writes, which is contrary to the goal of a power efficient

system. When a file read or write is put into a device

queue, the device services them in a FIFO order.

Archival workloads are generally considered to be

either write dominated [11] or read dominated [19],

but with unpredictable read access patterns in either

case. However, the most recent studies are from more

than a decade ago [20]. Because of this, we chose to

create a single generic write generator and three different

read generators to examine power usage across several

different access patterns.

The file-write generator periodically creates files and

inserts them as writes to the system. The number of files

created is contingent upon the size of the files and how

much data is to be generated. The time at which a given

file is written or read follows a rough diurnal pattern.

Each file has a 90% chance of being accessed during

the middle twelve hours of the day, from 6 AM to 6

PM.

We created 3 read generators for the simulation:

random, 8020, and time-correlated. The random-read

generator chooses files uniformly for reading, i.e. all files

are equally likely to be chosen; this represents a worst

case scenario for the system as any device is equally

likely to be turned on when a read is issued. In the 8020

generator, 80% of the reads go to 20% of the files. When

a file is written, it has a 20% chance of being marked

as a member of the 20% group; this represents having

a subset of the files be significantly more popular. The

time-correlated read generator works as follows: when

a read is issued, a file is randomly (uniformly) chosen.

Of the prior and next 45 files—our simulator tracks files

in a list ordered by their write times—between 5 and

35 are chosen. We then insert read requests for all such

files within a 20 minute time-span to represent a client

accessing a group of temporally correlated files . Like

the writes, reads may be inserted in either a uniform or

diurnal pattern, and the number of reads depends upon

how much data is to be read.

V. RESULTS

Our experiments fall into two broad categories to

examine the power efficiency impact maintained under

the policies we describe below. The first set of exper-

iments show the impact of the policy-guided scale-out

on the power-efficiency of the system, while the second

examines migration tasks.

A. Experiment Parameters

In our system, we simulate a purely disk based ap-

proach. We chose disk based systems rather than tape for

a number of reasons. First, tape suffers from very poor

random access times. Second, tape scales very poorly,

with long access times and very high overhead when

migrating between systems. Third, though individual

tapes take no power, tape drives and the associated

hardware and robotics take significant power to run [11].

The choice of our device parameters was based upon the

characteristics of commercially available hard drives and

single disk network-attached storage drives available at

the present time, summarized in Table I.

We create RGs of 14 data devices and 2 parity devices

because our primary experiments are simulating a long-

term archival style system that should withstand more

than a single device failure simultaneously [11]. We do

not simulate device failure or stripe element rebuild as

we are not modeling a system’s overall mean time to

data loss. Additionally recovery is similar to migration

in its long-term impact on the system, as it is effectively

relocating a stripe element.

Reliability groups are created as needed. The trigger is

for this is simple, when an RG becomes full, a new one

is created via a scale-out task. All subsequent writes are

assigned to the newly created RG. We iteratively write

to each device until its stripe element is filled. Once all

stripe elements are filled, the RG is not written to or

updated again. In other words, we have an append-only

storage system.

In our workloads, files uniformly range in size from

5 to 250 megabytes. We chose this range as archival

systems, such as the Internet Archive [21], often group

files together into large compressed files. Large file

dominated systems can also be found in other arenas,

such as video service and scientific computing. Table II

has an overview of the characteristics we use in each of

our read and write generators.

1) policy algorithms: We implement and use five

policy algorithms for generating scale-out and migration

proposals. The policies we chose are simple and along

one or two dimensions to ease implementation, and

aid in analysis of their impacts. We wanted a clear
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delineation between the heuristics to better understand

the influence various device prioritizations had upon the

the system. We describe each briefly below, along with

the motivation behind their use.

Random: This algorithm randomly picks nodes until a

valid layout is found. For scale-out, it creates the thickest

RG stripe possible out of the chosen devices. In other

words, the stripe thickness is equal to the amount of

space available on the device with the least left, thus

fully utilizing that device. For migration, each stripe

element is mapped to the first device that has sufficient

space for the stripe element. We use this algorithm as

our experimental control as it represents the most naive

approach to growing and managing the system with no

bias towards any device characteristic.

Greedy by Capacity per Watt (SW): This algorithm

sorts the candidate list by each device’s best potential

space-per-watt. For example, a device with a 10 watt

active power draw, and 500 GB of space would have

a rating of 50 GB/watt. For scale-out, the algorithm

chooses the first valid device for each stripe element

and creates the thickest stripe possible. For migration

the algorithm checks first to see if the stripe element

under consideration will fit in the device, if so, it maps

it there, else it checks the next best device. This policy is

intended to create the most power efficient RG possible

in scale-out, and similarly migrate stripe elements to

power efficient nodes.

Greedy by Bandwidth (BW): This algorithm sorts

the candidate list by device bandwidth. This algorithm

is intended as a comparison for SW, and to show

optimization over other metrics, in this case bandwidth.

This algorithms migration and scale out tasks proceed

the same as the SW algorithm.

Greedy by Power (Power): This algorithm sorts by

candidate devices active power draw, with the highest

power devices coming first. Its mappings of migration

and scale out proceed the same as the above greedy

algorithms

Greedy by SW×BW (Combo): This algorithm sorts

by the unit space per watt multiplied by the device

bandwidth. This policy is intended to create RGs that

prioritize power efficiency as well higher bandwidth in

its device choices.

Note that we create the thickest RG stripe possible

across all scale out policies . Though stripe thickness is

an important facet of storage systems, and can impact is-

sues such as rebuild and migration times, an examination

of their effects is beyond the scope of this paper.

Our filter functions for scale-out remove devices that

are already fully utilized from the candidate list, as they

have no storage space to offer.

Space 500-1500 GB

Bandwidth 25-125 MBPS

Active Power Draw 5-18 watts

Standby Power Draw 1-4 watts

Idle Time 5 Minutes

TABLE I: Device characteristics.

Amount Written 5000 GB Per Week

Amount Read 500 GB Per Week

File Size Range 5-250 MB

Read-Write Insert Pattern Diurnal

TABLE II: Workload characteristics.

B. Scale-Out Experiments

In the first set of experiments we use 1000 heteroge-

neous devices, each generated randomly with character-

istics detailed in Table I. We subjected the system to our

workloads, tracking the overall power usage and number

of devices powered on over the course of a simulated

year. Each workload was run 5 to 10 times under a

different device set for each scale-out (RG creation)

policy. These experiments were designed to examine the

power draw of a system grown under each of the various

policy algorithms.

Under low rates of uniform reads, each policy algo-

rithm has a significant impact on the amount of power

used by active devices over the course of a year. The

space-watt (SW) greedy algorithm performed the best,

having 40% better power-efficiency than the control (ran-

dom) policy, and 10% better than the next nearest policy

algorithm (combo) as show in Figure 3(a). However,

when we look at the system over time, and include the

power used in standby modes, the impact of the various

policies is minimal. We see no more than 2% difference

in power consumption across all the workloads, as shown

in Figure 4, because most devices spend the majority of

their time in standby due to the low rate of reads. To

illustrate this, in Figure 3(b) we show a comparison of

the amount of power used between standby and active

power usages at the end of one year. Note that the top

subfigure shows only power used while active and the

bottom shows the total power usage including both active

and standby modes. In the figure we use a device standby

power usage of 1/2 watt, as opposed to the 1-4 we

originally simulated. This was done to show that even

with very low standby power, the power use is dominated

by devices in standby because of the low rate of device

activations. This highlights a situation in storage where

Amdahl’s law [22] is analogously applicable, as we are

optimizing over the devices power usage while active,

which is a small fraction of the total time, reducing the

impact of our optimizations.
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Fig. 3: These figures show the year’s total power usage under
each of the scale-out policy algorithms. Figure 3(a) shows only
the amount of power when devices are active, i.e. the light
portion of the bars in the bottom chart. Figure 3(b) shows
the total power with the active power usage plus .5 watts per
device. Results are averaged across 10 runs under an 80/20
workload.

As mentioned above, we found there was relatively

little overall difference between the workloads, shown

by the overall weekly averages in Figure 4. This was

because each read workload—8020, time-correlated, and

random—was ultimately distributed across the system in

a relatively uniform fashion, minimizing the impact of

workload variation on the test. The impact of the 8020

and random workloads are nearly identical; although

there is some locality in the 8020 workload, the popular

files are also uniformly distributed, effectively mimick-

ing the random workload. The time correlated workload

had slightly lower power usage due to its higher locality

and hence lower simultaneous device accesses.

Note that all the workloads’ power draws appear to be

converging in Figure 4. This is because, as the system

grows in size, more devices must be used and the rate of

device activations stays the same. This means reads are
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(a) Time Correlated Diurnal Workload

2510

2520

2530

2540

2550

2560

2570

2580

W
a
tt

s

21.6

21.7

21.8

21.9

22.0

22.1

22.2

22.3

P
e
rc

e
n
t 

o
f 

M
a
x
-P

o
w

e
r

0 10 20 30 40 50 60

Weekly Averages

0 10 20 30 40 50 60
Week

3.5

4.0

4.5

5.0

D
e
v
ic

e
s 

S
im

u
lt

a
n
e
o
u
sl

y
 A

ct
iv

e

BW
Combo

Random
SW

Power

(b) Random Diurnal Workload
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(c) 8020 Diurnal Workload

Fig. 4: These figures show the weekly averages of weekly
average power draw as a function of the total possible power
usage, and the average number of devices simultaneously on.
The data points are average across 5 device sets. Note little
variation in power usage across workloads.

spread out across more devices, reducing the benefit that

the early use of more power-efficient devices conferred.

As a contrast, we ran a test with the same rate of

writes, but with the number of reads each week being a

function of the size of the archive—15% each week—
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under a random diurnal pattern. In other words, the

rate of reads grew linearly with the amount of data

stored. As shown in Figure 5, increased reads led to

very different behavior over the course of the year. The

average number of devices on at any time also increased

linearly as the growing amount of reads were uniformly

distributed throughout the system. This in turn led to a

linear increase in the average power usage of the system

across all task layout algorithms. At the end of a year,

the SW policy based system was nearly 20% more power

efficient than the control.

A counterintuitive result we found was despite the ran-

dom scale out algorithm integrating over twice as many

devices on average for each experiment—approximately

700 compared to 300 for all other algorithms as shown

in Figure 6—its power draw was still less than that

of the power-based scale-out policy and comparable to

the bandwidth based one, as shown in Figure 3(a).

This was due to two factors. First, the average device’s

active wattage for the random scale-out policy was 25 to

30% lower than that of the power-based policy. Second,

because of the larger number of devices, reads and

writes were further spread out. Individual devices spent

less time active: approximately 2000 minutes per year,

versus 4000 to 5000 for systems grown under the other

algorithms, shown in Figure 7(b). Though fewer devices

were utilized with the other (non-random) policies, their

higher power usage, combined with the very low rate of

reads, counteracted the potential impact of multiple reads

or writes being serviced within a single spin-up. This is

at odds with the general rule of thumb that utilizing fewer

devices for storage results in better power-efficiency. The

implication on future storage system design is that it

may be desirable to have a significantly larger number

of lower power devices for storage, than fewer higher

power and performance devices, particularly for low-

density, low-locality workloads.

We found that the random policy also had signif-

icantly fewer spin-ups per device on average, shown

in Figure 7(a). This is significant for two reasons.

First, frequent spin-ups and spin-downs may physically

impact the reliability of hardware when done at high

frequency, but at relatively low rates such as that shown

(effectively 2-3 times a day for most of our policies)

its impact is minimal [23]. Second, spin-up is itself an

energy intensive operation. This serves to highlight the

compromise that must be done in regards to disk spin-

down as a technique for energy savings. On the one hand,

it allows significant power savings to be realized, on the

other hand, it incurs access delays, extra-energy costs,

and hardware wearing. For example. when we looked
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Fig. 5: The averages for system with random diurnal reads
upscaled to read 15% of the archive each week. This is
averaged across 10 runs of a system under a random diurnal
workload. Note the linear growth and increased power usage
over that shown with the constant rate of reads in Figure 4
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Fig. 6: This figure shows the average number of devices
integrated into the system. The random policy integrates over
twice as many devices as the other policies, as it does not
prioritize any device type.

at the spin-up numbers for our upscaled workload (15%

of the archive read per week) the number of spin-ups

increased by nearly an order of magnitude, a situation

where hardware wearing and extra energy costs could

become a serious issue.

If we examine the average bandwidth of the devices

integrated into the system (see Figure 7(c)) we can see

that the combination metric chose devices with higher

average bandwidth, and as shown in Figures 3 and 5

it still provides good power-efficiency as well. This

demonstrates that even simple greedy policies like the

ones we are using, can not only optimize a system

towards a power efficiency, but incorporate performance

as well. Despite the increased performance however, the

increased bandwidth had minimal impact on the time

active, as the reads were infrequent enough that servicing

multiple reads quickly offered little benefit in terms of

a device being able to spin-down sooner.

C. Migration Experiments

To examine the impact of migration, our experiments

had two phases. First, 500 devices were populated with

files until 125 TBs of data was inserted. RGs were

304304



Random SW BW Power Combo
0

100

200

300

400

500

600

700

800

A
v
g
. 

P
e
r-

D
e
v
ic

e
 S

p
in

-U
p
s

(a) Spin-ups Per Device

Random SW BW Power Combo
0

1000

2000

3000

4000

5000

6000

A
v
g
. 
A

ct
iv

e
 T

im
e
 P

e
r-

D
e
v
ic

e

(b) Active Time Per Device

Random SW BW Power Combo
0

20

40

60

80

100

120

A
v
g
. 

B
a
n
d
w

id
th

 M
B

P
S

(c) Avg. Bandwidth

Fig. 7: These figures show averages for spin-ups, active time,
bandwidth of devices over a year under an 8020 workload.
Note the random policy has significantly less active time and
spin-ups, and devices under the BW policy remain active for
similar amounts of time despite higher transfer rates.
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Fig. 8: This figure shows the average number of device spin-
ups across the system. Despite different policies and in partic-
ular the random policy’s fewer integrated devices (Figure 6)
the number spin-ups across all policies are within 5% of one
another.

created as needed using the random RG creation algo-

rithm. We ran a read workload of each type—8020, time-

correlated, and random—at a rate of 500 GB per week

under a diurnal pattern, and tracked the power usage.

For the second phase, the coordinator identified the

20% least power-efficient devices—those with the worst

total space-to-watt ratio—that had been integrated into

one or more RGs. It then migrated the least efficient

devices’ stripe elements to other devices in the system

using each of the heuristic algorithms described earlier.
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Fig. 9: Impact of migration policies. Note impact is consistent
across all workloads, though the time-correlated uses less
power due to its high-locality and lower device active time.

After migration we ran the same workload again and

tracked power usage. Each migration layout algorithm

was run on the same 500 device set, with five iterations

of each workload and the cumulative results averaged.

Figure 9 shows that running the migration policies on

the 500 random device set affected the overall power

usage of the system in each case. The SW algorithm

improved the most across the workloads, between 14 and

16%. The power based policy increased the amount of
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power usage slightly. Though this is within the standard

deviations, each of the algorithms concentrates stripe

elements on fewer devices, while random spreads it out.

This is much the same as the earlier counter-intuitive re-

sult where concentrating data manages to increase power

usage. Despite concentrating data on fewer devices,

power usage increased measurably, adding more weight

to our earlier result showing that spreading data out may

yield power savings when there is a choice between

using few high power devices and greater numbers of

low power ones.

VI. FUTURE WORK

There is a great deal of investigation left to be done.

To begin with, we do not look at the energy impact

of migrating and rebuilding data within a large archival

system. In systems with upwards of tens of thousands of

devices, such activities will be a frequent event. We also

need to look at power-aware multidimensional policy

algorithms and heuristics. The ones in this work, though

effective for exploring power usage impacts, only look

at one or two dimensions which is inappropriate for real

world use.

Closer examination of the power-performance tradeoff

on a large scale is also needed. We focus solely on power

as it is generally held that archival systems users will

tolerate low performance in order to reduce operating

expenses, though this is not appropriate for all systems.

Examination of the feasibility and impact of fine-grained

control on the energy usage and performance of a system

over very long time scales is needed as most work

examining the trade-off focuses on only a few devices

over the course of minutes to hours, not months to years.

VII. CONCLUSIONS

This paper presented an examination of how various

policies influence the total power usage of a large dis-

tributed archival system over extended periods of time.

We found several useful results. First, for low read-

rates, power usage is almost completely dominated by

that during long idle periods. Second, concentrating data

on higher power devices may mitigate the impact of

amortizing multiple reads and writes within a spin-up,

under low read densities. Third, even naive heuristics

can have a significant positive, or negative, impact upon

power usage when growing or migrating data within a

system. In total, our work provides an initial exploration

of long-term power usage, and demonstrates the need

for further studies in power-aware storage and archive-

specific architectures to efficiently store rarely accessed

data.
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