
Emulating a Shingled Write Disk

Rekha Pitchumani1, Andy Hospodor1, Ahmed Amer2, Yangwook Kang1, Ethan L. Miller1, and Darrell D. E. Long1

1Storage Systems Research Center, University of California, Santa Cruz, CA
2Santa Clara University, Santa Clara, CA

Abstract—Shingled Magnetic Recording technology is ex-
pected to play a major role in the next generation of hard
disk drives. But it introduces some unique challenges to system
software researchers and prototype hardware is not readily
available for the broader research community. It is crucial to
work on system software in parallel to hardware manufacturing,
to ensure successful and effective adoption of this technology.

In this work, we present a novel Shingled Write Disk (SWD)
emulator that uses a hard disk utilizing traditional Perpendicular
Magnetic Recording (PMR) and emulates a Shingled Write Disk
on top of it. We implemented the emulator as a pseudo block
device driver and evaluated the performance overhead incurred
by employing the emulator. The emulator has a slight overhead
which is only measurable during pure sequential reads and
writes. The moment disk head movement comes into picture,
due to any random access, the emulator overhead becomes so
insignificant as to become immeasurable.

I. INTRODUCTION

Any further significant improvements to the capacity of

hard disk drives demands some major changes to the currently

employed techniques, as they are reaching their limitations

imposed by the laws of physics. Of the new technologies being

explored, Shingled Magnetic Recording (SMR) promises an

areal density increase of about 2.3x [13], and is particularly

appealing as it requires minimal physical changes to the

manufacturing process. A disk employing SMR technology, a

Shingled Write Disk (SWD), shingles (layers) newly written

tracks on top of preceding tracks, and hence new writes destroy

old data on any such previously written shingles that are

overwritten. This forces the SWD to be a largely sequential

write device, but it remains an unrestricted random access

device when dealing with read operations. Without careful

management of the data layout on disk, random writes are

destructive and so simple in-place block updates are no longer

possible. Although it is possible to treat a SWD like a virtual

tape (albeit with better random read performance), exploring

its potential to replace Hard Disk Drives in their traditional

roles is essential and is the topic of ongoing research. To

enable such efforts, we therefore present a novel shingled write

disk emulator that captures the key functional characteristics

of such devices, while offering the flexibility to easily adjust

drive design parameters.

Recent research [1], [4], [5] has explored the design issues

in a shingled write disk system and proposed solutions ranging

from data layout management to system software changes. But

further development and assessment of the proposed solutions

are hindered by both the limited availability of prototype

devices, and the relative difficulty of physically adjusting

prototype device parameters. In this work, we aim to solve this

problem by emulating SWDs atop existing hard disk drives.

Hard disk drive manufactures are already producing shin-

gled write drive prototypes, but the technology is not yet ready

to enter production, and prototypes are not readily available

for the broader research community. Even when the prototypes

are ready to be distributed to researchers, it is not easy to alter

the disk parameters and reconfigure new prototypes as desired

without continually resorting to the manufacturer. But with our

emulator, altering drive parameters is very simple, which is

highly desirable for both researchers and disk manufacturers.

Shingled Disks might not replace traditional hard disks for

applications demanding good random write performance (like

databases), but with appropriate remapping and firmware, they

may be highly suitable for the wide array of applications that

demand increased capacity at ever lower costs (e.g., archival

systems, data logging, referential databases and data ware-

houses). We believe the introduction of SWDs will motivate

research resulting in new hybrid storage architectures, and that

offering a SWD emulator would be of great benefit to such

research efforts.

The basic approach behind our emulator is to mimic the

effect of individual writes on multiple tracks, maintaining in-

formation about the affected tracks and using this information

when responding to subsequent read operations. Producing

realistic behavior from the drive requires some prior knowl-

edge about the underlying disk’s physical geometry. This is

specifically to tell us to which track a write is destined, and

thereby to determine the subsequent tracks and sectors affected

by that operation. We make use of the state of the art in disk

performance profiling to shed light on hard disk drive internals

and this information is used to configure our emulator for a

specific disk.

We have implemented a pseudo device driver in the linux

kernel to work in the block layer and perform the above

operations. We used a single platter 160GB Seagate SATA

drive as a test drive to create a virtual shingled block device

using our emulator driver. This shingled block device was

evaluated to measure the overhead incurred by the emulator,

and it was determined that the emulator overhead is negligible

and the shingled block device’s performance is in line with the

underlying disk. This shows that the emulated device can be

used not just for functional experiments (to verify and validate

SWD system software solutions), but can also be used for

2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems

1526-7539/12 $26.00 © 2012 IEEE

DOI 10.1109/MASCOTS.2012.46

339

performance comparisons reliably, as it does not mask the

physical behavior of the underlying disk.

Our main contribution is a novel solution that can be used

to test shingled disk management schemes, and shingled disk

layouts and parameters, atop a real disk. Since the underlying

medium and the read and write mechanics of a shingled write

disk is expected to be very similar to existing hard disk drives,

the read/write performance measurements on our emulated

disk can serve as a good SWD performance indicator.

II. BACKGROUND

Magnetic data recording technology is fast-approaching the

density limit imposed by the super-paramagnetic effect for

perpendicular recording. Current drives store 400 GB/in2, the

current limit is estimated to be about 1 Tb/in2 [12]. While

shingled write disks [9], [13], [6] are not the only technology

aimed at enabling drives that exceed this limit, it differs from

competing approaches by offering an elegant solution that

does not require any significant physical changes to the drive

mechanics, or to the manufacturing processes and materials

used for the disk drives. However, shingled write disks intro-

duce interesting new challenges, as they result in functional

differences when compared to existing drives, thanks to the

introduction of potentially destructive writes when data is

updated.

The elegant solution offered by shingled disks is to use

a write head with a stronger, but asymmetric, magnetic field.

This approach is made possible by the fact that writes require a

much stronger magnetic field than do reads. Shingled writing

leverages this property by overlapping the currently written

track with the previous track, leaving only a relatively small

strip of the previous write track untouched. The remain-

ing track is therefore narrower than when it was originally

written, but remains readable. In this manner, tracks are

ultimately placed closer together, resulting in the capacity

gain. Achieving further gains in magnetic hard drives will

require a combination of this basic shingled writing tech-

nology, and what is known as Two-Dimensional Magnetic

Recording (TDMR) [11] technology. In this work we focus on

emulating the behavior of basic shingled magnetic recording.

Such disks would allow read operations to be performed

randomly, but writing tracks must now be done sequentially

as long as there is a chance of overwriting subsequent tracks.

The number of tracks affected by such a write, k tracks, is

a design parameter but is expected to be typically 4–8. This

demands very careful interaction on the part of the system

software, or the implementation of firmware that masks this

risk through remapping data (as proposed by our prior work

and Casutto et al. [2], [4]).

Disk data density improvements will eventually be limited

by the superparamagnetic effect, which creates a trade-off

between the media signal-to-noise ratio, the writeability of

the media by a narrow track head, and the thermal stability

of the media; Sann et al. call this the media trilemma [11].

While various approaches to this problem have been proposed;

Track
Width

Main Pole

Track
(N-2)

Track
(N-1)

Track
(N)

Trailing Shield

Side
Shield

Direction
 of write

Fig. 1: Corner write head for shingled writes [2].

shingled writing offers perhaps the most elegant solution.

Rather than radically altering the makeup of the magnetic layer

(as is done by technologies that pattern the media surface,

or manipulate it by localized heating using lasers). Shingled

writing does this by using a write head that generates an

asymmetric, wider, and much stronger field that fringes in one

lateral direction, but is shielded in the other direction. Figure 1

shows a larger head writing to track n, as used by Greaves

et al. in their simulations [8]. Shingled writing overlaps tracks

written sequentially, creating effectively narrower tracks after

the once-wider leading track has been partially overwritten,

and is thereby expected to increase storage densities by a factor

of at least 2.5 [13] to 3 [8] times the current theoretical limit

of 1 Tb/in2 with current magnetic recording technology.

III. EMULATION

Our goal here is to make a faithful Shingled Write Disk

emulator, one that closely mimics the SWD’s functional be-

havior and can be used to verify and validate proposed disk

management schemes. Storage simulation has been widely

used by systems researchers as it aids evaluation of proposed

storage systems architectures and systems software. Examples

of such successful simulation systems include DiskSim [3],

NandSim and DRAMSim [14]. But in our work, we seek to

emulate the behavior of a SWD, and allow experimentation

using existing physical drives.

Simulation systems have taken special care to report real-

istic performance characteristics of systems by studying and

simulating the physical timing characteristic of the concerned

storage systems. But the big issue with SWDs is not its phys-

ical timing but rather it’s the functional behavioral difference.

Hence, we leave the physics of the underlying mechanics to

a real physical device, thereby emulating a SWD on top of a

real hard disk drive. In this section, we detail how to emulate

a SWD on a traditional hard disk.

A. Track Shingling

The difference between a SMR hard disk and a PMR hard

disk is track shingling. Thus, any modern hard disk can be

made to look like a SMR disk by viewing track shingling as

340

(a) SMR drive (b) Emulating Track Shingling on a PMR drive
using a Map Table

Fig. 2: Original and Emulated Track Shingling. Shingling results in wider
write tracks and narrower read tracks.

using multiple (k, where k is the number of tracks affected

by shingling) tracks for writing and single track for reading.

Figure 2a illustrates track shingling in a SWD with k = 4.

Figure 2b illustrates how to emulate multiple track writes

and single track reads in a modern disk drive using a map table.

A write to a track is written to only one track, but the mapping

table is modified to indicate that subsequent (k - 1) tracks were

written with data from the track that was written to. Every

read request first checks the map table and is redirected to a

different track if required.

For example, in Figure 2b a write to track 1 is written to

track 1 and track 2 is marked as overwritten by track 1 (here,

k is 2). Every read operation first checks the map table to

determine whether the track was overwritten earlier.

B. Sector Level Mapping

Disk Reads and Writes do not happen at track level, they

happen at sector level. Hence, the mapping also has to be

performed for individual sectors and has to take the underlying

hard disk’s physical geometry into account.

1) Hard Disk Physical Geometry: As hard disks have

become more complex, they hide detail behind Logical Block

Addressing. Today, host operating systems see data written to

a disk as being written to consecutive sectors and address the

sectors by their Logical Block Addresses (LBA) and the disk

takes care of mapping the LBA to the sector’s physical location

on the disk. Hence, determining in which track a sector with

a given LBA resides and determining the LBAs of the sectors

that lie in the subsequent tracks (and will be affected by a

shingled write) requires an understanding of the underlying

disk’s true physical geometry.

Modern hard disk drives have a complex physical ge-

ometry that is tailored to individual drives. The geometry

of a particular drive is determined by a combination of

the disk surface characteristics and the drive’s write head

characteristics. Hence the geometry of two disks from the same

manufacturer with the same specification can differ [10]. Even

the disk’s controller learns the drive’s geometry during the

final manufacturing process, meaning that the final geometry

is established post-production.

Disk drive physical geometry can be extracted by leveraging

existing research [7]. Obtaining accurate values is neither easy

nor necessary. It is a known fact that when the HDD firmware

detects a physical sector as not usable anymore, it remaps the

LBA of the sector to one of the sectors in its spare locations.

We are aware that even if the extracted LBA mapping is very

accurate, it is subject to changes due to the above remapping.

For our purposes, approximation of the physical geometry was

sufficient and hence, ignoring the intended sector remapping

is justifiable, as we are focusing on the mapping indicated by

the disks observed performance when carefully benchmarked.

Hence, we parameterize the disk drive geometry and fit the

extracted values into the following parameters:

• Number of Heads The number of heads gives the

number of writable surfaces in a disk drive and can be

obtained from the drive’s specification.

• Sector Layout Mechanism Different hard disk man-

ufacturers use different sector layout mechanisms [7].

Figure 3a illustrates the most commonly used schemes,

surface serpentine, cylinder serpentine and hybrid serpen-

tine schemes. A complex sector layout mechanism can

make the mapping scheme quite complicated.

• Number of Zones A Zone is a set of adjacent tracks that

have the same number of sectors per track. For example,

in Figure 3b there are 4 zones.

• Zone Size The Zone Size is measured in terms of number

of tracks. In Figure 3b, there are two tracks in every zone

and hence the zone size is 2 for all 4 zones.

• Track Size per Zone Denotes the number of sectors per

track in a zone. In Figure 3b, the outermost zone has 20

sectors per track and the zone next to it has 16 tracks per

track.

• Track Skew The start LBA of a track is placed at an

angle past the start LBA of the previous track. This angle

is given by the track skew.

2) Write request handling: On a Write, the Logical Block

Addresses of the sectors that will be overwritten by the current

Write has to be determined. Once determined, the overwritten

sector information has to be stored in a sector level map table.

A simple Hash Table where every entry is a tuple of the

form 〈originalLBA,mappedLBA〉 would be sufficient. On a

Write, new entries must be added for every overwritten sector,

mapping it to the LBA of the current sector being written to.

Further, if there exists an entry for the LBA of the current

sector, it has to be deleted from the hash table.

Determining Overwritten Sectors Figure 4 illustrates the

parameters required to determine overwritten sectors. To make

it easier to understand, imagine a line from the disk OD to

ID starting at the lowest LBA of the first track on OD. It is

known that the sector boundary of subsequent tracks may not

align with this imaginary line. But lets take the first sector

after this line to be the start and lay the circular track out in

341

(a) Sector Layout Mechanisms. (b) Surface Layout is determined by Zoning and Track
Skew.

Fig. 3: Simplified View of Hard Disk Physical Geometry. Modern hard disk drive’s geometry is determined post-production. Hence, the geometry of two
disks from the same manufacturer with the same specification can differ.

Fig. 4: Emulating Sector Overwrite. Determining the LBA of the sectors
being overwritten by a Write W requires physical geometry information.

a horizontal manner as shown in Figure 4.

Let TN(LBA) be the track number of the track where the

sector with the given LBA resides. In the figure, i to i+4 are

the track numbers of the tracks shown and TN(LBA) for any

LBA residing in i will be i. SA(Track) denotes the starting

address of (or the lowest LBA in) the given Track.

As seen in Figure 4, the starting addresses do not align with

our imaginary line because of Track Skew and are placed at an

angular offset and after a period realigns with our imaginary

line. In the figure, this Skew period is 4 tracks. Skew(Track)
gives the Skew for the Track in terms of number of sectors.

Tracks with the same number of sectors per track is grouped

into a Zone. The figure shows tracks from two Zones, Zn and

Zn+1. Z(Track) gives the Zone number of a given Track and

TS(Zn) is the Track Size, the number of sectors per track for

the Zone Zn.

The values obtained from TN, SA, Z, TS, and Skew are all

determined based on the extracted disk geometry information.

Hence, the accuracy of the calculations are heavily dependent

on the accuracy of extracted disk geometry. Determining the

overwritten sectors on a write is a two step process. The first

step is determining the absolute position ABS POS of the

Write W from our imaginary line. The next step is finding the

LBA at ABS POS for subsequent tracks.

First step: Let LBAW be the Logical Block Address of the

Write W and t = TN(LBAW). Then,

POS = LBAW − SA(t) + Skew(t)

If POS > TS(Z(t)), then

ABS POS = POS − TS(Z(t))

Else,

ABS POS = POS

Second step: This step gives how to determine the LBA

of the affected sectors at Track t + j. If Skew(t + j) <
ABS POS, then

LBA = SA(t+ j) + (ABS POS − Skew(t+ j))

Else,

LBA = SA(t+j)+(TS(Z(t+j))−Skew(t+j))+ABS POS

If the affected track falls in the next zone, like track i+ 4
in the figure, then ABS POS is first adjusted as below.

ABS POS = (ABS POS/TS(Z(t))) ∗ TS(Z(t+ j))

3) Read request handling: Read requests have to be

checked to determine if the sectors being read would have

been (for an SWD) overwritten by a previous write. In other

words, the Hash Table has to be checked for the presence

of sector entries for all sectors being read. If there exists no

entry, then the read is straightforward - forward the read to

the underlying real disk and proceed with the read as is done

normally.

But, reads could get a little complicated if tracks are not

written sequentially. For example, in Figure 5, a write to track

1 overwrites tracks 2 and 3, and a write to track 2 overwrites

track 3. Lets consider three writes happening one after another,

Writes 1, 2, and 3 in the figure. After all 3 writes, Track 3

has segments pointing to other tracks.

There are three choices as to what to do when an over-

written sector, i.e., a sector that was overwritten by write to a

different sector, is read back. As such, the emulated drive can

342

Fig. 5: Random writes may result in data corruption. Read (4) after random
writes (1, 2, 3) may return corrupted data or error.

operate in three modes, depending on the user’s requirements,

and the modes determine how the emulated drive behaves.

Data Centric In this mode, the overwritten data (as per

the mapping information) will be retrieved, thereby emulating

the behavior of the Shingled Write Disk with no overwrite

error checking in-place. For example, in the above scenario,

the Read request, happening 4th in sequence, is split into four

requests, each sent to their track and the read information is

returned back. Read splits do not happen if tracks are written

sequentially.

Performance Centric If retrieving the overwritten data

back does not matter, then the emulator performance can

be improved further by keeping it simple and maintaining a

bitmap structure to indicate overwrites. In that case, reads can

be proceeded as usual, but the data buffer containing the data

from overwritten sectors is to be filled with garbage data. In

other words, invalid data is not retrieved if known to be invalid

a priori.
Development Centric Since a primary purpose of emulat-

ing the shingled disk is to aid system software researchers and

developers, a mode that returns an error when an overwritten

sector is read back will be beneficial. This mode can be

combined with either of the above two modes as needed. And

it is up to the upper-level layers to determine whether the

overwrite was intentional or unintentional.

IV. IMPLEMENTATION

Our requirement can be best fulfilled by a pseudo device

driver in the kernel that receives block read and write requests

and performs the mapping as described above. We use the

Device Mapper infrastructure available in the Linux 2.6 kernel,

a generic framework for constructing new block devices and

mapping them to existing block devices.

We implemented dm-shingle, a bio-based device-mapper

target module. Linux provides a dmsetup utility to manage

the logical devices that use the device-mapper driver. Once our

dm-shingle driver module is loaded, dmsetup can be used to

create a logical shingled block device with desired parameters

on top of the block device representing the hard disk. The

resulting I/O stack can be seen in Figure 6.

The mapping table is implemented as a sector-level hash

table as described earlier. The number of buckets in the hash

table can be chosen during device setup and multiple entries in

a bucket are linked as a list. The hash function is a simple LBA

Fig. 6: Emulator in I/O Stack. We implemented the Emulator as a pseudo
block device driver in the Linux kernel.

mod number of buckets scheme and the number of buckets

should be a power of two for faster hash function execution.

This ensures even distribution of entries across buckets when

writes are mostly sequential.

The emulator driver allows for some customization of the

emulated SWD and provides flexibility in deciding suitable

parameters. The parameters that are customizable are the num-

ber of tracks overwritten by the shingled write (k), extracted

underlying disk geometry and the hash table size. The various

read behaviors detailed above has not been implemented and

can be another such parameter. The read behavior that has

been currently implemented and used for the evaluations in

the next section is the Data Centric behavior.

Since the emulator is implemented in the block layer,

adding new commands is also straightforward. New commands

can be easily serviced by implementing new ioctls. Since the

Shingled Write Disks are still under prototype development

and the best interface for it is not yet known, this feature

becomes crucial. Researchers can have the flexibility to work

on new command sets and interfaces best suited for SWDs.

V. EVALUATION

The experiments for the evaluation were run in a host

with a dual-core 3.20 GHz Intel(R) Core(TM) i5 processor

with hyper-threading and a 8GB RAM. To keep it relatively

simple, the test disk drive we used was a 160GB single platter

Seagate SATA drive. We chose a single platter disk to avoid

a complicated sector layout mapping.

We have used Disk Geometry Analyzer (DIG) to perform

geometry extraction on our test drive and is explained in detail

below. We used fio to generate desired IO patterns, to test and

verify our emulator. The results shown in this section were

measured using fio.

All tests were run on block devices using Direct IO,

bypassing the kernel buffering, because we did not want the

buffering to interfere with our mapping. For example, a read

call to sectors overwritten by an earlier write, if serviced by

343

(a) Zone Determination. (b) Track Skew - Entire Disk. (c) Track Skew - Smaller Scale.

Fig. 7: Geometry Extraction. Physical Geometry of a 160 GB single platter test disk extracted using Disk Geometry Analyzer (DIG).

the kernel block buffers, will give a different result than if

read from the disk. But it has to be noted that this is a

problem that will be faced even when using a real Shingled

Write Disk. A shingled disk management scheme, that is not

absolutely sure that it will not read sectors that was overwritten

unintentionally, cannot use buffering as-is.

A. Geometry Extraction

We used Disk Geometry Analyzer (DIG), a disk charac-

terization tool to extract the disk geometry of our test drive.

DIG determines the number of tracks and the size of each

track in terms of number of sectors. Figure 7a shows a plot of

the DIG output. Even after ignoring some of the variations in

the measured result as noise, the results only show a zoning

pattern and do not give clear zoning information, as expected.

Krevat et.al. [10] call this behavior as adaptive zoning,

where track sizes are determined by the capabilities of disk

surfaces and head combination post-production. Since we

are only modeling the Shingled Disk behavior, approximate

zoning is sufficient and the desired level of approximation

can be chosen. Figure 7a shows how we can fit a curve to

the measured values and obtain zoning information based on

that. One is free to choose the number of zones and hence

the level of approximation they desire to have, by varying the

curve parameters or the number of zones.

DIG measures the time taken to reach the first sector of

individual tracks from the first sector of the outermost track,

to calculate Skew as explained in [7]. Figure 7b shows the

plot of this result for the entire disk and 7c shows the plot at

a smaller scale for 100 tracks. Once again there is some noise

in the results obtained, but a pattern can be observed.

Access time gradually increases with track number and then

drops significantly after a certain number of tracks. If this

number of tracks is n tracks, then track skew corresponds

to an angle of 2π/n. For our test disk, this period alternates

between 6 and 7 tracks.

B. Verification

We used fio to run Write-focused workloads on the emu-

lated SWD and then to read the written data back and perform

Fig. 8: Write Verification. As expected, random writes on the emulated SWD
destroy data, while sequential and banded writes don’t.

MD5 checksum verification on them. We wrote 64MB of data

in each case and hence totally 16,384 4KB blocks were written

in each case. Figure 8 shows the result of the verification.

As expected, sequential write does not result in any data

loss. Next, we verified random writes in 3 cases, one where

the random write is performed in a total space 100GB, another

in a space of 10GB and the last in a space of 1GB. As

expected, all three random writes result in some blocks being

overwritten and the number of blocks overwritten grows as

the space decreases.

Finally, we performed banded write, where tracks are

grouped together into bands, with some tracks serving as

inter-band gap between them. The bands are written to in a

log manner. As expected, the results show that there are no

overwritten blocks in case of banded write. Banding requires

some geometry information, and careful evaluation at the end

of bands to ensure they do not affect subsequent bands is

essential.

C. Performance Evaluation

The goal of the evaluations presented in this section is

to measure the performance overhead incurred by the SWD

emulator. We have used fio utility to generate the desired IO

workload and measured the performance. For all scenarios

below, the tests were run multiple (5-10) times and the average

344

Fig. 9: Emulator Performance Overhead. A slight overhead is visible during
Sequential IO, but becomes negligible as disk head movement comes into
picture.

Fig. 10: The number of tracks overwritten by a shingled write does not affect
reads, but adds a slight overhead for every overwritten track during writes.

aggregate bandwidth reported by fio is reported here.

As mentioned earlier, all IOs are Direct IOs without kernel

buffering and the IO bandwidth of the virtual shingled block

device is compared to that of the underlying raw block device.

A virtual shingled block device was created to mimic a

Shingled Disk that overwrites 3 tracks on a write and the

IO block size was 4K. Figure 9 shows the performance of

sequential and random reads and writes.

The emulator incurs a slight overhead, but it is observed

only during pure sequential reads and writes, as seen in the

figure. The bandwidth obtained from the virtual device is very

similar to that of the underlying block device in case of random

reads and random writes.

To understand the overhead incurred during sequential reads

and writes better, we varied the number of tracks overwritten

by the shingled device and measured the sequential read and

write bandwidth. Figure 10 gives the result of the above

experiment. The first subplot shows the raw underlying disk

bandwidth and the second bigger subplot shows the bandwidth

of the emulated SWD as the number of tracks overwritten

increases.

Fig. 11: Banded Write Performance. Emulator overhead is negligible and
the banded write performance can be improved by increasing the IO block
size.

The emulated SWD when the number of tracks overwritten

is 1 is behaviorally the same as the regular disk. Hence,

the difference in bandwidth of these two is pure overhead,

irrelevant of how the emulated device is being used. The

pure overhead for reads is higher than that of writes, but it

is not affected by varying the number of tracks overwritten by

shingled write, whereas write bandwidth decreases as number

of tracks overwritten increases.

The above behavior is expected, because for reads every

sector has to be verified against the hash table to check whether

it was overwritten by a previous write, which explains the

higher overhead. Lower the number of hash table buckets,

higher the chances of collision and the decrease in bandwidth,

as the number of entries in the hash table grows. Having a hash

table with high number of buckets reduces collision, and hence

the reads are unaffected by the number of tracks overwritten

in our results.

During writes, the emulator checks the hash table for every

sector being written to, in order to delete the entries if present.

This explains the pure overhead for writes. Further, the work

to be done increases as the number of tracks overwritten by

a write increases. Hence, each additional overwritten track

incurs roughly 2% overhead.

We believe some form of banded write is the most likely

write scenario to occur with a Shingled Write Disk and hence

evaluate the emulated SWD performance overhead for banded

writes. We divided the disk into 16 bands and wrote randomly

to all 16 bands. In each band, the write is sequential, and

hence, we varied the block size of the writes from 4KB to

1MB, and the result can be seen in Figure 11.

Figure 11 shows three things. First, the emulator overhead

becomes negligible with banded write. Hence, our emulated

SWD can be a really good performance indicator, since writes

in a real SWD are most likely to follow some form of similar

banded writing. Second, emulator performance is unaffected

by IO block size. Third, banded write performance can be

improved greatly if write block size is increased. There is an

345

Fig. 12: Emulator Performance is not impacted by the Number of Bands.

anomaly where at the 128K block size, the emulated SWD

performs better than the real disk. We believe this is due to

buffer size mismatches in the regular block IO path in the

Linux kernel.

In the final test, we check the impact of the number of bands

on performance. We chose a 32KB block size and divided

the test disk into fixed sized bands. The data to be written

was split across the bands and written to the bands randomly.

Figure 12 shows the number of bands does not affect the

emulator performance. Further, as expected, the bandwidth

decreases as the data gets spread across many bands. But

after 16 bands, the number of bands does not affect write

performance.

VI. CONCLUSION

Shingled Magnetic Recording technology can increase the

areal density and hence the storage capacity of hard disks

at least two-fold. Its successful adaption may be the key to

meeting the ever-growing storage demands. Since SMR drive

changes the way a disk behaves from the host operating system

perspective significantly, it requires system software support,

or complex firmware, to aid its integration into existing storage

systems. To further research in this area, and provide access

to realistic SWD behavior, we have implemented a novel

emulator that can be easily deployed as a linux driver atop

existing physical disks.

We have presented a novel method to readily emulate

SWDs on any existing hard disk. We also implemented the

proposed method as a pseudo device driver and evaluated

the overhead incurred. We have shown that there is a slight

overhead in the cases of pure sequential reads and writes, but

the overhead incurred is so negligible as to be imperceptible in

cases of random IO and banded IO (the latter being the most

likely configuration for future SWDs). We will be making our

emulator available for use by the research community.

Our emulation approach provides us a unique opportunity

to do a little more than Shingling. Since the best interface or

command sets for a Shingled Write Disk are as-yet unknown,

the emulator can be used to experiment with those as well. A

few of the interesting ways in which this can be used include:

• Report an Overwrite error when overwritten sectors are

read back.

• Add additional Banding commands by means of ioctls

and present a Banded device to the upper layers.

• Add commands to report the disk’s geometry information

to the upper layers, say, to perform dynamic banding

as desired, or to implement a simple read-modify-write

mechanism.

REFERENCES

[1] AMER, A., HOLLIDAY, J., LONG, D. D. E., MILLER, E. L., PARIS,
J.-F., AND THOMAS SCHWARZ, S. Data management and layout
for shingled magnetic recording. In IEEE Transactions on Magnetics
(2011).

[2] AMER, A., LONG, D. D. E., MILLER, E. L., PARIS, J.-F., AND

SCHWARZ, T. Design issues for a shingled write disk system. In 26th
IEEE Symposium on Mass Storage Systems and Technology (2010).

[3] BUSY, J. S., SCHINDLER, J., SCHLOSSER, S. W., GANGER, G., AND

CONTRIBUTORS. The disksim simulation environment version 4.0
reference manual. Tech. Rep. CMU-PDL-08-101, Carnegie Mellon
University, May 2008.

[4] CASSUTO, Y., SANVIDO, M. A., GUYOT, C., HALL, D. R., AND

BANDIC, Z. Z. Indirection systems for shingled-recording disk drives.
In Proceedings of the 26th IEEE Conference on Mass Storage Systems
and Technologies (May 2010).

[5] GIBSON, G., AND GANGER, G. Principles of operation for shingled disk
devices. Tech. Rep. CMU-PDL-11-107, Carnegie Mellon University,
2011.

[6] GIBSON, G., AND POLTE, M. Directions for shingled-write and two-
dimensional magnetic recording system architectures: Synergies with
solid-state disks. Tech. Rep. CMU-PDL-09-014, Carnegie Mellon
University, May 2009.

[7] GIM, J., AND WON, Y. Extract and Infer Quickly: Obtaining Sector
Geometry of Modern Hard Disk Drives. ACM Transactions on Storage
6, 2 (2010).

[8] GREAVES, S., KANAI, Y., AND MURAOKA, H. Shingled recording for
2–3 Tbit/in2. IEEE Transactions on Magnetics 45, 10 (Oct. 2009),
3823–3829.

[9] KASIRAJ, P., NEW, R., DE SOUZA, J., AND WILLIAMS, M. System
and method for writing data to dedicated bands of a hard disk drive.
United States Patent 7490212.

[10] KREVAT, E., TUCEK, J., AND GANGER, G. R. Disks are like
snowflakes: No two are alike. In 13th Workshop on Hot Topics in
Operating Systems (May 2011).

[11] SANN, C. K., RADHAKRISHNAN, R., EASON, K., ELIDRISSI, R.,
MILES, J. M., VASIC, B., AND KRISHNAN, A. R. Channel models
and detectors for two-dimensional magnetic recording (TDMR). IEEE
Transactions on Magnetics 46, 3 (Mar. 2010), 804–811.

[12] SHIROISHI, Y., FUKUDA, K., TAGAWA, I., TAKENOIRI, S., TANAKA,
H., AND YOSHIKAWA, N. Future options for HDD storage. IEEE
Transactions on Magnetics 45, 10 (Oct. 2009).

[13] TAGAWA, I., AND WILLIAMS, M. High density data-storage using
shingle-write. In Proceedings of the IEEE International Magnetics
Conference (2009).

[14] WANG, D., GANESH, B., TUAYCHAROEN, N., BAYNES, K., JALEEL,
A., AND JACOB, B. Dramsim: a memory system simulator. SIGARCH
Comput. Archit. News 33, 4 (Nov. 2005), 100–107.

346

